warzywnictwo warzywnictwo
  Mapa witryny | Dojazd     
piątek, 19.01.2018
.
.




Informacje ogólne
- Strona główna
- O Instytucie
- Dyrekcja
- Działalność
- Struktura organizacyjna
- Rada naukowa
- Konferencje i seminaria
- Aktualności
- Dojazd
Prace badawcze
- Współpraca z zagranicą
- Projekty zagraniczne
- Projekty krajowe
- Własność intelektualna
Usługi
- Oferta usługowa
- Szkolenia
Zasoby
- Strony pracowników
- Biblioteka
Wydawnictwa
- Oferta wydawnicza
- Publikacje
- Vegetable Crops Research Bulletin

General information | Instruction for authors | Search | Select issue
 

 

 

 

 

 

 

 


VCRB :: Contents of Volume 60/2004 :: Detailed information



MODELLING OF SENSORY QUALITY OF CHINESE CABBAGE CULTIVARS (BRASSICA RAPA L. VAR. PEKINENSIS (LOUR.) OLSSON) AFTER STORAGE


Marek GAJEWSKI
Warsaw Agricultural University (SGGW) Nowoursynowska 166, 02-787 Warszawa, Poland


Summary


Sensory quality of four Chinese cabbage cultivars ("Bilko" F1, "Kasumi" F1, "Taranko" F1 and "Gold Rush" F1), which were stored for five weeks in a cold store, was examined. Quality of the cabbage was evaluated by trained assessors, using a quantitative descriptive analysis (QDA). Eight descriptors for the cabbage quality were chosen in an expert panel. A blind consumer preference test was also performed. Results of the experiment show that cultivars of Chinese cabbage differ in respect to some sensory properties - colour, pungent flavour, bitter taste and foreign flavour. Overall sensory quality of cv. "Gold Rush" F1 was scored the lowest. Linear multiple regression models were applied to predict scores for overall quality and taste preference of Chinese cabbage in relation to scores for sensory descriptors. The correlation between consumer preference and QDA results was very significant. A principal components analysis (PCA) showed that two principal components together explained 93% of the variation in sensory quality of the cultivars. 


keywords:Chinese cabbage, storage, quality, consumer preference, sensory analysis, quantitative descriptive analysis, principal component analysis

[Back]      [Printer friendly version]